**Př. 1**: Vytvořte gramatiku, která bude nad abecedou $\{0, 1\}$ generovat řetězec obsahující lichý počet 0 a sudý počet 1. - $\{0, 1\} \quad w \dots \text{lichý počet } 0 \text{, sudý počet } 1$ - 4 stavy **Př. 2**: - $S \to abA \mid bS \mid aa \mid A$ - $A \to abA$ - $B \to aS \mid baA \mid a$ a) Najděte $G'$ typu G3R takovou, že $L(G') = L(G)$. + $S \to bS | aS_{1} | aS_{2} \mid aS | bB_{1} | aB_{2} \mid aA_{1}$ + $A \to aA_{1} \mid aS | bB_{1} | aB_{2}$ + $B \to aS | bB_{1} | aB_{2}$ - $S_{1} \to bA$ - $B_{1} \to aA$ - $A_{1} \to bA$ - $S_{2} \to aS_{3}$ - $S_{3} \to e$ - $B_{2} \to e$ b) Vytvořte tabulku popisující nedeterministický konečný automat A takový, že platí $L(A) = L(G') = L(G)$. | | a | b | | ------------------ | ----------------------------------- | -------------- | | $\to S$ | $\{S, S_{1}, S_{2}, A_{1}, B_{2}\}$ | $\{S, B_{1}\}$ | | $S_{1}$ | - | $\{A\}$ | | $S_{2}$ | $\{S_{3}\}$ | - | | $\leftarrow S_{3}$ | - | - | | $A$ | $\{S, A_{1}, B_{2}\}$ | $\{B_{1}\}$ | | $A_{1}$ | - | $\{A\}$ | | $B$ | $\{S, B_{2}\}$ | $\{B_{1}\}$ | | $B_{1}$ | $\{A\}$ | - | | $\leftarrow B_{2}$ | - | - | c) Vytvořte tabulku popisující deterministický konečný automat A' takový, že platí $L(A') = L(G') = L(G)$. | | a | b | | -------------------------------------------------------- | ---------------------------------------------- | --------------------- | | $\to S$ (0) | $\{S, S_{1}, S_{2}, A_{1}, B_{2}\}$ (1) | $\{S, B_{1}\}$ (2) | | $\leftarrow \{S, S_{1}, S_{2}, A_{1}, B_{2}\}$ (1) | $\{S, S_{1}, S_{2}, S_{3}, A_{1}, B_{2}\}$ (3) | $\{S, A, B_{1}\}$ (4) | | $\{S, B_{1}\}$ (2) | $\{S, S_{1}, S_{2}, A, A_{1}, B_{2}\}$ (5) | $\{S, B_{1}\}$ (2) | | $\leftarrow\{S, S_{1}, S_{2}, S_{3}, A_{1}, B_{2}\}$ (3) | $\{S, S_{1}, S_{2}, S_{3}, A_{1}, B_{2}\}$ (3) | $\{S, A, B_{1}\}$ (4) | | $\{S, A, B_{1}\}$ (4) | $\{S, S_{1}, S_{2}, A, A_{1}, B_{2}\}$ (5) | $\{S, B_{1}\}$ (2) | | $\leftarrow\{S, S_{1}, S_{2}, A, A_{1}, B_{2}\}$ (5) | $\{S, S_{1}, S_{2}, S_{3}, A_{1}, B_{2}\}$ (3) | $\{S, A, B_{1}\}$ (4) | **Př. 3**: Sestrojte NKA $A$, kde platí $L(A) = L(G_{1})^R \cup L(G_{2})$. - $G_{1}$ - $S \to aS | bbA$ - $A \to aaA | B$ - $B \to bbB | e$ - $G_{2}$ - $S \to Aba | Ab | B$ - $A \to Aaa | B$ - $B \to Bbb | e$ - G3L -> reverze -> G3P -> NKA -> reverze -> NKA Plán 1) $A_{1} \qquad L(A_{1}) = L(G_{1})$ 2) $A_{1}^R \qquad L(A_{1}^R) = L(A_{1})^R = L(G_{1})^R$ 3) $G_{2}^R \qquad L(G_{2}^R) = L(G_{2})^R$ 4) $A_{2}^R \qquad L(A_{2}^R) = L(G_{2}^R) = L(G_{2})^R$ 5) $A_{2} \qquad A_{2} = (A_{2}^R)^R \quad L(A_{2}) = \dots = L(G_{2})$ 6) $A \qquad L(A) = L(A_{1}^R) \cup L(A_{2}) = L(G_{1})^R \cup L(G_{2})$ $G_{2}^R$ - $S \to abA | bA | B$ - $A \to aaA | B$ - $B \to bbB | e$