Přidání poznámek k prostorům se skalárním součinem v LAA

This commit is contained in:
Filip Znachor 2022-12-30 21:58:51 +01:00
parent a896242b34
commit f20f7a3dc2

View file

@ -1,2 +1,91 @@
# Prostory se skalárním součinem
### Skalární součin
Nechť $U$ je lineární vektorový prostor nad $\mathbb{R}$. Zobrazení $(\vec{x}, \vec{y}):U \times U \to \mathbb{R}$ splňující vlastnosti
1. $(\vec{x}, \vec{x}) \geq 0$ pro každé $\vec{x} \in U; (\vec{x}, \vec{x}) = 0$, právě když $\vec{x} = \vec{o}$,
2. $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x}) \space \forall \vec{x}, \vec{y} \in U$,
3. $(k\vec{x}, \vec{y}) = k(\vec{x}, \vec{y}) \space \forall \vec{x}, \vec{y} \in U$ a $\forall k \in \mathbb{R}$
4. $(\vec{x} + \vec{y}, \vec{z}) = (\vec{x}, \vec{z}) + (\vec{y}, \vec{z}) \space \forall \vec{x}, \vec{y}, \vec{z} \in U$,
se nazývá **skalární součin**.
### Euklidovský prostor
Lineární vektorový prostor se skalárním součinem se nazývá **Eukleidovský prostor**.
Příklad:
1. $\mathbb{R}^3 : (\vec{x}, \vec{y}) = x_{1}y_{1} + x_{2}y_{2} + x_{3}y_{3}$
2. $\displaystyle \mathbb{R}^n : (\vec{x}, \vec{y}) = x_{1}y_{1} + x_{1}y_{1} + \dots + x_{n}y_{n} = \sum^n_{i=1} x_{i}y_{i}$
3. $\displaystyle C(0, 1) : (f, g) = \int^1_{0} f(x) \cdot g(x) \, dx$
4. $\displaystyle \mathbb{P}_{n} : (p(x); q(x)) = \int^b_{a} p(x) \cdot q(x) \, dx$
V Eukleidovském prostoru platí (pro každé $k \in \mathbb{R}$ a $\vec{x}, \vec{y}, \vec{z} \in U$):
1. $(\vec{x}, k\vec{y}) = k(\vec{x}, \vec{y})$
2. $(\vec{x}, \vec{y} + \vec{z}) = (\vec{x}, \vec{y}) + (\vec{x}, \vec{z})$
3. $(\vec{x}, \vec{o}) = (\vec{o}, \vec{x}) = 0$
**Cauchy-Schwarzova nerovnost** - Je-li $U$ Eukleidovský prostor, potom pro každé $\vec{x}, \vec{y} \in U$ platí
- $(\vec{x}, \vec{y})^2 \leq (\vec{x}, \vec{x}) \cdot (\vec{y}, \vec{y})$.
### Norma
**Norma** v lineárním vektorovém prostoru $U$ je zobrazení $\Vert \vec{x} \Vert : U \to \mathbb{R}$ s vlastostmi
1. $\Vert \vec{x} \Vert \geq 0 \, \forall \vec{x} \in U;\space \Vert \vec{x} \Vert = 0$, právě když $\vec{x} = \vec{o}$,
2. $\Vert k\vec{x} \Vert = \vert k \vert \cdot \Vert \vec{x} \Vert \ \forall\vec{x} \in U$ a $\forall k \in \mathbb{R}$,
3. $\Vert \vec{x} + \vec{y} \Vert \leq \Vert \vec{x} \Vert + \Vert \vec{y} \Vert \ \forall \vec{x}, \vec{y} \in \mathbb{R}$.
Je-li $U$ Eukleidovský prostor, potom $\Vert \vec{x} \Vert = \sqrt{ (\vec{x}, \vec{x}) }$ je norma. Nazývá se **norma indukovaná sklárním součinem**.
Pro dva prvky $x, y$ libovolného L.V.P. $U$ lze definovat úhel dvou prvků
$$
\displaystyle \phi = \arccos \frac{(\vec{x}, \vec{y})}{\Vert \vec{x} \Vert \cdot \Vert \vec{y} \Vert}
$$
a vzdálenost dvou prvků $d(\vec{x}, \vec{y}) = \Vert \vec{x} - \vec{y} \Vert$. Vzdálenosti se obvykle říká **metrika** a příslušnému prostoru **metrický prostor**.
## Ortogonalita
Dva prvky $\vec{x}, \vec{y}$ Eukleidovského prostoru $U$ jsou **ortogonální** (kolmé), jestliže $(\vec{x}, \vec{y}) = 0$.
- Píšeme $\vec{x} \perp \vec{y}$.
- Množiny $X, Y, \subset U$ jsou ortiginální, jestliže $\vec{x} \perp \vec{y}$ pro každé $\vec{x} \in X$ a $\vec{y} \in Y$.
Každá podmnožina Eukleidovského prostoru, jejíž prvky jsou nenulové a navzájem ortogonální, je LN.
- Žádný ze vzájemně kolmých vektorů není možné vyjádřit jako LK ostatních.
### Pythagorova věta
Nechť $U$ je Eukleidův prostor, $\vec{x}, \vec{y} \in U$. Potom
$$
\vec{x} \perp \vec{y} \iff \Vert \vec{x} + \vec{y} \Vert^2 = \Vert \vec{x} \Vert^2 + \Vert \vec{y} \Vert^2.
$$
### Ortogonální báze
Báze Eukleidovského prostoru $U$, jejíž každé dva prvky jsou ortogonální.
- např. kanonická báze
V každém Eukleidovském prostoru konečné dimenze existuje ortogonální báze.
#### Gram-Schmidtův ortogonalizační proces
- určení ortogonální báze ze zadané báze
1. Mějme v $U$ bázi $\vec{b}_{1}, \vec{b}_{2}, \dots, \vec{b}_{n};$ hledáme ortogonální bázi $\vec{g}_{1}, \vec{g}_{2}, \dots, \vec{g}_{n}$.
2. Položíme $\vec{g}_{1} = \vec{b}_{1}$.
3. Určíme $\displaystyle \vec{g}_{2} = \vec{b}_{2} - \frac{\vec{b}_{2}, \vec{g}_{1}}{(\vec{g}_{1}, \vec{g}_{1})} \vec{g}_{1}$, což je ortogonální (kolmý) průmět vektoru $\vec{b}_{2}$ do přímky dané vektorem $\vec{g}_{1}$. Platí, že $\vec{g}_{2} \perp \vec{g}_{1}$.
4. Obecně hledáme $\vec{g}_{k}$ jako $\vec{b}_{k} - \overline{\vec{b}_{k}}$, kde $\overline{\vec{b}_{k}}$ je ortogonální průmět prvku $\vec{b}_{k}$ do podprostoru s ortogonální bází $\vec{g}_{1}, \vec{g}_{2}, \dots, \vec{g}_{k-1}$. Tedy:
$$
\displaystyle \vec{g}_{k} = \vec{b}_{k} - \biggl(
\frac{(\vec{b}_{k}, \vec{g}_{1})}{(\vec{g}_{1}, \vec{g}_{1})} \vec{g}_{1}
+
\frac{(\vec{b}_{k}, \vec{g}_{2})}{(\vec{g}_{2}, \vec{g}_{2})} \vec{g}_{2}
+
\dots
+
\frac{(\vec{b}_{k}, \vec{g}_{k-1})}{(\vec{g}_{k-1}, \vec{g}_{k-1})} \vec{g}_{k-1}
\biggr).
$$
5. Pak jistě $\vec{g}_{k} \perp \vec{g}_{1}, \vec{g}_{k} \perp \vec{g}_{2}, \dots, \vec{g}_{k} \perp \vec{g}_{k-1}$.