FAV-ZCU/KMA LAA/6. Lineární zobrazení.md

79 lines
3.4 KiB
Markdown
Raw Normal View History

2022-12-03 12:47:17 +01:00
# Lineární zobrazení
2022-12-06 09:50:52 +01:00
- $U = R^4$ - před zobrazením
- $V = R^3$ - po zobrazení
- $\mathbb{L} : U \to V$
2022-12-03 12:47:17 +01:00
2023-01-02 17:14:06 +01:00
Nazývá se také **homomorfizmus**.
2023-01-02 21:35:12 +01:00
$\dim(Ker \space \mathbb L) + \dim(Im \space \mathbb L) = \dim(U)$
2022-12-03 12:47:17 +01:00
### Ověření linearity zobrazení
- zkontrolovat, že platí
- $\mathbb{L}(V + V) = \mathbb{L}(V) + \mathbb{L}(V)$
- $\mathbb{L}(k \cdot V) = k \cdot \mathbb{L}(V)$
2022-12-03 12:47:17 +01:00
### Jádro
- všechny LK vektorů před zobrazením, které se po zobrazení rovnají 0
- zjištění přes zjištění LK
2023-01-02 21:35:12 +01:00
- $Ker \space \mathbb{L} = \{ \forall \vec x \in U; \mathbb L (\vec x) = 0 \}$
- zápis: $Ker \space \mathbb{L} = \langle \vec{u}; \vec{v} \rangle$
Zapíšu zobrazení do matice, po provedení GJEM zjistím, které prvky se zobrazí na nulový vektor (tedy si vyjádřím např. $a, b, c$).
2022-12-03 12:47:17 +01:00
### Obraz
- všechny LK vektorů po zobrazení
2023-01-02 21:35:12 +01:00
- $Im \space \mathbb{L} = \{ \vec y \in V; \exists \vec x U, \mathbb{L}(\vec x) = \vec y \}$
- zápis: $Im \space \mathbb{L} = \langle \vec{u}; \vec{v} \rangle$
Vypočítám jej opět zapsáním zobrazení do matice a provedením GJEM. Obrazem je poté LN množina vektorů (podobné jako u báze).
2023-01-02 17:14:06 +01:00
### Identické zobrazení
Zobrazení definované vztahem $F(x) = (x)$.
### Prosté zobrazení
Každý prvek z prostoru $U$ se zobrazí přesně na jeden prvek z prostoru $V$.
- $\dim(Ker \space \mathbb{L}) = \{\vec{o}_{U}\}$
### Izomorfní zobrazení
2023-01-02 21:35:12 +01:00
Lineární zobrazení je **izomorfizmem**, pokud je **prosté** a dimenze jeho obrazu je stejná jako dimenze prostoru V.
- platí $\dim(Ker \space \mathbb{L}) = \{\vec{o}_{U}\}$ a $\dim(Im \space \mathbb{L}) = \dim(V)$
- $\dim(U) = \dim(V)$
2023-01-02 17:14:06 +01:00
## Matice lineárního zobrazení
Nejsnadnější způsob, jak počítačově popsat lineární zobrazení.
2023-01-02 17:14:06 +01:00
Znázorňuje vztah souřadnicemi prvku vzhledem k jedné bázi a souřadnicemi zobrazení prvku vzhledem k druhé bázi.
- **Dimenze obrazu** lineárního zobrazení $\mathbb{L}$ je **stejná jako hodnost matice** lineárního zobrazení.
- Pokud je matice lineárního zobrazení **regulání**, lineární zobrazení je **izomorfizmus**.
**Postup**:
- Určete matici zobrazení $\mathbb{L}$ v bázích $B_{1}$ a $B_{2}$.
1. Vektory první báze **zobrazím pomocí lineárního zobrazení**.
2. Zobrazené vektory napíšu do sloupců matice $A_{2}$.
3. Do matice $A_{1}$ napíšu do sloupců vektory ze druhé báze.
4. Matice **spojím** do matice $A = [A_{1} \mid A_{2}]$, kterou vyřeším pomocí GJEM.
5. Na **levé straně** díky GJEM dostanu **jednotkovou matici** a na **pravé straně** vznikne **matice lineárního zobrazení**.
2023-01-02 14:30:42 +01:00
### Matice přechodu
Matice identického lineárního zobrazení vzhledem k bázím $B_{1}$ a $B_{2}$.
2023-01-02 17:14:06 +01:00
Postup je stejný jako u matice lineárního zobrazení, jen prvky první báze nezobrazuji a rovnou je zapíšu do matice.
### Složené zobrazení
Nechť $\mathbb{L}_{1} : U \to V, \mathbb{L}_{2} : V \to W$ a báze v $U, V, W$ jsou $C, D, E$. A je matice $\mathbb L_1$ vzhledem k bázím $C, D$ a $B$ je matice $\mathbb L_{2}$ vhledem k bázím $D, E$.
Složené zobrazení $\mathbb L = \mathbb L_{2} \circ \mathbb L_{1} : U \to W$ je lineární a jeho matice vzhledem k bázím $C, E$ je rovna matici $B \cdot A$.
Důsledky:
- Pro uvedené matice lin. zobr. platí: $hod(B \cdot A) \leq \min\{hod(A), hod(B)\}$.
- Pokud je lineární zobrazení izomorfizmus s maticí $A$ vzhledem k bázím $C, D$, potom inverzní zobrazení má vzhledem k bázím $D, C$ matici $A^{-1}$.